14 research outputs found

    Breaking of internal waves parametrically excited by ageostrophic anticyclonic instability

    Full text link
    A gradient-wind balanced flow with an elliptic streamline parametrically excites internal inertia-gravity waves through ageostrophic anticyclonic instability (AAI). This study numerically investigates the breaking of internal waves and the following turbulence generation resulting from the AAI. In our simulation, we periodically distort the calculation domain following the streamlines of an elliptic vortex and integrate the equations of motion using a Fourier spectral method. This technique enables us to exclude the overall structure of the large-scale vortex from the computation and concentrate on resolving the small-scale waves and turbulence. From a series of experiments, we identify two different scenarios of wave breaking conditioned on the magnitude of the instability growth rate scaled by the buoyancy frequency, λ/N\lambda/N. First, when λ/N0.008\lambda/N\gtrsim0.008, the primary wave amplitude excited by AAI quickly goes far beyond the overturning threshold and directly breaks. The resulting state is thus strongly nonlinear turbulence. Second, if λ/N0.008\lambda/N\lesssim0.008, weak wave-wave interactions begin to redistribute energy across frequency space before the primary wave reaches a breaking limit. Then, after a sufficiently long time, the system approaches a Garrett-Munk-like stationary spectrum, in which wave breaking occurs at finer vertical scales. Throughout the experimental conditions, the growth and decay time scales of the primary wave energy are well correlated. However, since the primary wave amplitude reaches a prescribed limit in one scenario but not in the other, the energy dissipation rates exhibit two types of scaling properties. This scaling classification has similarities and differences with D'Asaro and Lien's (2000) wave-turbulence transition model.Comment: 53 pages, 18 figures. This Work has been submitted to Journal of Physical Oceanography. Copyright in this Work may be transferred without further notic

    海洋内部領域での潮汐散逸に関わる非線形波動力学の研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 伊賀 啓太, 東京大学教授 安田 一郎, 東京大学教授 佐藤 薫, 東京大学教授 日比谷 紀之, 東京大学教授 早稲田 卓爾University of Tokyo(東京大学

    Dynamical large deviations for an inhomogeneous wave kinetic theory: linear wave scattering by a random medium

    No full text
    Article submitted to Annales Henri Poincaré: A Journal of Theoretical and Mathematical PhysicsInternational audienceThe wave kinetic equation predicts the averaged temporal evolution of a continuous spectral density of waves either randomly interacting or scattered by the fine structure of a medium. In a wide range of systems, the wave kinetic equation is derived from a fundamental equation of wave motion, which is symmetric through time-reversal. By contrast, the corresponding wave kinetic equation is time-irreversible. A similar paradox appears whenever one makes a mesoscopic description of the evolution of a very large number of microscopic degrees of freedom. Recently, it has been understood that the kinetic description itself, at a mesoscopic level, should not break time-reversal symmetry. The proper theoretical or mathematical tool to derive a mesoscopic time-reversal stochastic process is large deviation theory, for which the deterministic wave kinetic equation appears as the most probable evolution. This paper follows Bouchet (2020) and a series of other works that derive the large deviation Hamiltonians of the classical kinetic theories. We propose a derivation of the large deviation principle for the linear scattering of waves by a weak random potential in an inhomogeneous situation. This problem involves microscopic scales corresponding to the typical wavelengths and periods of the waves and mesoscopic ones which are the scales of spatial inhomogeneities in the spectral density and the time needed for the random scatterers to alter the wave spectrum. The main assumption of the kinetic regime is a large separation of these microscopic and mesoscopic scales. We choose a generic model of wave scattering by weak disorder: the Schrödinger equation with a random potential. We derive the path large deviation principle for the local spectral density and discuss its main properties. We show that the mesoscopic process obeys a time-reversal symmetry at the level of large deviations. (abridged

    Dynamical large deviations for an inhomogeneous wave kinetic theory: linear wave scattering by a random medium

    No full text
    Article submitted to Annales Henri Poincaré: A Journal of Theoretical and Mathematical PhysicsInternational audienceThe wave kinetic equation predicts the averaged temporal evolution of a continuous spectral density of waves either randomly interacting or scattered by the fine structure of a medium. In a wide range of systems, the wave kinetic equation is derived from a fundamental equation of wave motion, which is symmetric through time-reversal. By contrast, the corresponding wave kinetic equation is time-irreversible. A similar paradox appears whenever one makes a mesoscopic description of the evolution of a very large number of microscopic degrees of freedom. Recently, it has been understood that the kinetic description itself, at a mesoscopic level, should not break time-reversal symmetry. The proper theoretical or mathematical tool to derive a mesoscopic time-reversal stochastic process is large deviation theory, for which the deterministic wave kinetic equation appears as the most probable evolution. This paper follows Bouchet (2020) and a series of other works that derive the large deviation Hamiltonians of the classical kinetic theories. We propose a derivation of the large deviation principle for the linear scattering of waves by a weak random potential in an inhomogeneous situation. This problem involves microscopic scales corresponding to the typical wavelengths and periods of the waves and mesoscopic ones which are the scales of spatial inhomogeneities in the spectral density and the time needed for the random scatterers to alter the wave spectrum. The main assumption of the kinetic regime is a large separation of these microscopic and mesoscopic scales. We choose a generic model of wave scattering by weak disorder: the Schrödinger equation with a random potential. We derive the path large deviation principle for the local spectral density and discuss its main properties. We show that the mesoscopic process obeys a time-reversal symmetry at the level of large deviations. (abridged

    Dynamical large deviations for an inhomogeneous wave kinetic theory: linear wave scattering by a random medium

    No full text
    Article submitted to Annales Henri Poincaré: A Journal of Theoretical and Mathematical PhysicsInternational audienceThe wave kinetic equation predicts the averaged temporal evolution of a continuous spectral density of waves either randomly interacting or scattered by the fine structure of a medium. In a wide range of systems, the wave kinetic equation is derived from a fundamental equation of wave motion, which is symmetric through time-reversal. By contrast, the corresponding wave kinetic equation is time-irreversible. A similar paradox appears whenever one makes a mesoscopic description of the evolution of a very large number of microscopic degrees of freedom. Recently, it has been understood that the kinetic description itself, at a mesoscopic level, should not break time-reversal symmetry. The proper theoretical or mathematical tool to derive a mesoscopic time-reversal stochastic process is large deviation theory, for which the deterministic wave kinetic equation appears as the most probable evolution. This paper follows Bouchet (2020) and a series of other works that derive the large deviation Hamiltonians of the classical kinetic theories. We propose a derivation of the large deviation principle for the linear scattering of waves by a weak random potential in an inhomogeneous situation. This problem involves microscopic scales corresponding to the typical wavelengths and periods of the waves and mesoscopic ones which are the scales of spatial inhomogeneities in the spectral density and the time needed for the random scatterers to alter the wave spectrum. The main assumption of the kinetic regime is a large separation of these microscopic and mesoscopic scales. We choose a generic model of wave scattering by weak disorder: the Schrödinger equation with a random potential. We derive the path large deviation principle for the local spectral density and discuss its main properties. We show that the mesoscopic process obeys a time-reversal symmetry at the level of large deviations. (abridged

    Simulating turbulent mixing caused by local instability of internal gravity waves

    No full text
    International audienceWith the aim of assessing internal wave-driven mixing in the ocean, we develop a new technique for direct numerical simulations of stratified turbulence. Since the spatial scale of oceanic internal gravity waves is typically much larger than that of turbulence, fully incorporating both in a model would require a high computational cost, and is therefore out of our scope. Alternatively, we cut out a small domain periodically distorted by an unresolved large-scale internal wave and locally simulate the energy cascade to the smallest scales. In this model, even though the Froude number of the outer wave, Fr, is small such that density overturn or shear instability does not occur, a striped pattern of disturbance is exponentially amplified through a parametric subharmonic instability. When the disturbance amplitude grows sufficiently large, secondary instabilities arise and produce much smaller-scale fluctuations. Passing through these two stages, wave energy is transferred into turbulence energy and will be eventually dissipated. Different from the conventional scenarios of vertical shear-induced instabilities, a large part of turbulent potential energy is supplied from the outer wave and directly used for mixing. The mixing coefficient Γ=ϵP/ϵ\Gamma = \epsilon_P/\epsilon, where ϵ\epsilon is the dissipation rate of kinetic energy and ϵP\epsilon_P is that of available potential energy, is always greater than 0.5 and tends to increase with FrFr. Although our results are mostly consistent with the recently proposed scaling relationship between Γ\Gamma and the turbulent Froude number, FrtFr_t, the values of Γ\Gamma obtained here are larger by a factor of about two than previously reported

    From ray tracing to waves of topological origin in continuous media

    No full text
    International audienceContinuous media commonly support a discrete number of wave modes that are trapped along interfaces defined by spatially varying parameters. In the case of multicomponent wave problems, those trapped modes fill a frequency gap between different wave bands. When they are robust against continuous deformations of parameters, such waves are said to be of topological origin. It has been realized over the last decades that waves of topological origin can be predicted by computing a single topological invariant, the first Chern number, in a dual bulk wave problem that is much simpler to solve than the original wave equation involving spatially varying coefficients. The correspondence between the simple bulk problem and the more complicated interface problem is usually justified by invoking an abstract index theorem. Here, by applying ray tracing machinery to the paradigmatic example of equatorial shallow water waves, we propose a physical interpretation of this correspondence. We first compute ray trajectories in the phase space given by position and wavenumber of the wave packet, using Wigner-Weyl transforms. We then apply a quantization condition to describe the spectral properties of the original wave operator. This bridges the gap between previous work by Littlejohn and Flynn showing manifestation of Berry curvature in ray tracing equations, and more recent studies that computed the Chern number of flow models by integrating the Berry curvature over a closed surface in parameter space. We find that an integral of Berry curvature over this closed surface emerges naturally from the quantization condition, which allows us to recover the bulk-interface correspondence

    From ray tracing to topological waves in continuous media

    No full text
    Inhomogeneous media commonly support a discrete number of wave modes that are trapped along interfaces defined by spatially varying parameters. When they are robust against continuous deformations of parameters, such waves are said to be topological. It has been realized over the last decades that the existence of such topological waves can be predicted by computing a single topological invariant, the first Chern number, in a dual bulk wave problem that is much simpler to solve than the original wave equation involving spatially varying coefficients. The correspondence between the simple bulk problem and the more complicated interface problem is usually justified by invoking an abstract index theorem. Here, by applying ray tracing machinery to the paradigmatic example of equatorial shallow water waves, we propose a physical interpretation of this correspondence. We first compute ray trajectories in a phase space given by position and wavenumber of the wave packet. We then apply a quantization condition to describe the spectral properties of the original wave operator. We show that the Chern number emerges naturally from this quantization relation

    A Study of Maternal Patients Diagnosed with Inborn Errors of Metabolism Due to Positive Newborn Mass Screening in Their Newborns

    No full text
    Background: There are reports of mothers being diagnosed with inborn errors of metabolism (IEM) via positive newborn screening (NBS) of their newborns. Mothers with IEM are often considered to have mild cases of little pathological significance. Based in Niigata Prefecture, this study aimed to investigate mothers newly diagnosed with IEM via positive NBS in their newborns using tandem mass spectrometry, and to clarify the disease frequency and severity. Methods: This was a single-institution, population-based, retrospective study. The subjects were mothers whose newborns had false-positive NBS, among 80,410 newborns who underwent NBS between April 2016 and May 2021. Result: there were 3 new mothers were diagnosed with IEM (2 with primary systemic carnitine deficiency (PCD) and 1 with 3-methylcrotonyl-CoA carboxylase deficiency) out of 5 who underwent examination among 18 false positives. The opportunity for diagnosis was low C0 and high C5-OH acylcarnitine levels in their newborn. Two novel SLC22A5 variants (c.1063T > C/c.1266A > G) were identified in patients with PCD. None of the patients had any complications at the time of diagnosis, but two patients showed improvement in fatigue and headache after taking oral carnitine. Conclusion: New mothers with IEM cannot be considered as mild cases and need to be treated when necessary. The two novel SLC22A5 variants further expand the variant spectrum of PCD
    corecore